

Everybody wants Smart Phone to act as

 Phone

 Pager

 PDA Organizer

 High quality camera (still and video)

 Portable TV/ radio/ audio-video player

 Laptop

 Play station

 GPS

 Book Reader

 Car/Home/Office key

 Remote control

 Cash on demand

 Mentor/advisor
 …….

What makes a Smart Phone so smart?

 Operating System

 Web Access

 Apps

◼ Web apps: run in a web browser
 HTML, JavaScript, Flash, server-side components etc.

◼ Native: compiled binaries for the device

 Often make use of web services

 Data Syncs

 Hardware sensors like GPS, compass,

accelerometer,, gyroscope, proximity sensor

 Cameras

Major Operating systems for Smart Phones

Android finally stands first

The word Android means Human with a robot appearance

Android Devices

Android

 An open source platform for mobile, embedded
and wearable devices

 Google is the principle maintainer while several
other companies contribute to the system.

 Device manufacturers can customize Android
to suite their needs.

 Being open source, it can be liberally extended
to incorporate new cutting edge technologies
as they emerge.

Android
 provides connectivity

❖ 3G Networks

❖ 4G Networks

❖ 802.11 Wi-Fi Networks

❖ Bluetooth Connectivity

 a multi-process system, in which each application
runs in its own process.

 supports advanced audio/video/still media formats
such as MPEG-4, H.264, MP3 and AAC, AMR, JPEG,
PNG, GIF.

 Except Android 1.0 and 1.1, all the other Android
versions are named after sweet treats like Jelly Bean,
Ice Cream Sandwich, Honeycomb etc.

Android –Facts
 Android is dominating the mobile market by

powering hundreds of millions of mobile devices in
more than 190 countries around the world.

 Android is available in around 46 languages, this also
means apps can be produced in different languages
to cover a wider audience.

 Android users are able to choose from millions of
apps from Google Play and most of them are free.

 There is an Android running device in space. NASA
equipped Floating space robots with Nexus S
handsets running on Android Gingerbread.

 Google makes its biggest revenue from advertising.

Open Handset Alliance (OHA)

A business alliance
consisting of 84
companies

Open Handset Alliance Members

 Quoting from
www.OpenHandsetAlliance.com

 “… Open Handset Alliance a group of 84 technology

and mobile companies have come together to
accelerate innovation in mobile and offer consumers a
richer, less expensive, and better mobile experience.

 Together we have developed Android, the first
complete, open, and free mobile platform.

 We are committed to commercially deploy handsets
and services using the Android Platform. ”

Open Handset Alliance (OHA)

Android –Brief History

➢ Android Inc. was found way back in 2003 at Palo
Alto, California.

➢ Android was developed by the Andy Rubin, Rich
Miner, Nick Sears and Chris White.

➢ Android was named after Andy Rubin, co-creator of
Android. It was the name given to him for his
obsession and love for robots.

➢ Android was purchased by the Google in August,2005
for 50 million $.

➢ Android operating system was developed as a
platform for digital cameras. But Google later
changed its focus to smart phones as it saw its
potential.

Android -Brief History
 2005

◼ Google acquires startup Android Inc. to start Android
platform

◼ Work on Dalvik VM begins

 2007
◼ Open Handset Alliance announced
◼ Early look at SDK

 2008
◼ Google sponsored 1st Android Developer Challenge
◼ T-Mobile G1 (HTC Dream) announced
◼ SDK 1.0 released
◼ Android released open source (Apache License)
◼ Android Dev Phone 1 released

Android Versions
Android Beta
✓ First Version of Android.
✓ The focus of Android beta was testing usability.
✓ Android beta had many problems on speed and

performance.

Android Astro Boy 1.0
✓ First full version of android.
✓ Released on September 23, 2008.

✓ Wi-Fi and Bluetooth support.
✓ Quite slow in operations.
✓ Copy and paste feature in the web browser was not

present.

Android Petit Four 1.1
✓Released on Feb. 9, 2009.
✓Ability to save attachments in messages.
✓Support added for marquee in system layouts.

✓ Released on April 30, 2009.
✓ Added auto-rotation option.
✓ Copy and Paste feature added in the web

browser.
✓ Increased speed and performance but not upto

required level.

✓ Released on September 15, 2009.
✓ Voice search and Search box were added.
✓ Faster OS boot time and fast web browsing

experience.
✓ Typing was quite slower.

✓ Released on October 26, 2009.
✓ Bluetooth 2.1 support.
✓ Improved typing speed on virtual keyboard,

with smarter dictionary.
✓ no Adobe flash media support.

http://teckhamsterblog.files.wordpress.com/2010/12/cupcake.jpg
http://the-gadgeteer.com/wp-content/uploads/2009/10/Android-1.6-Donut.jpg
http://ticker.ttsh.netdna-cdn.com/wp-content/uploads/2009/10/android-ecliar.jpg

✓ Released on May 20, 2010.
✓ Support for Adobe Flash, tethering
✓ Improved Application launcher with better browser
✓ No internet calling.

✓ Released on December 6, 2010.
✓ Updated User Interface with high efficiency and speed
✓ Internet calling
✓ One touch word selection and copy/paste.
✓ New keyboard for faster word input.
✓ More successful version of Android than previous

versions.
✓ Voice or video chat using Google Talk
✓ not supporting multi-core processors.

✓ Released on February 22, 2011.
✓ Support for multi-core processors
✓ Ability to encrypt all user data.
✓ This version of android is only available for tablets.

http://www.signature9.com/wp-content/uploads/2010/06/android_froyo.jpg
http://i.zdnet.com/blogs/gingerdroid.png
http://cdn4.digitaltrends.com/wp-content/uploads/2011/01/android-3-0-honeycomb-official-logo.jpg

✓ Released on November 14, 2011.
✓ Virtual button in the UI.
✓ Support for NFC
✓ Better voice recognition (dictating/Voice typing)
✓ Facial recognition (Face Unlock)

✓ Released on June 27, 2012.
✓ Triple buffered graphics pipeline
✓ Smoother user interface.
✓ Security and performance enhancements
✓ Camera app UI updated

➢ Android KitKat 4.4
✓ Released on Oct. 31, 2013.
✓ Screen recording
✓ New Translucent system UI
✓ Enhanced notification access
✓ System Performance improvements

http://www.geek.com/wp-content/uploads/2011/08/android_ice-cream-sandwich-580x423.jpg

✓ Released on Oct. 17, 2014.
✓ New Material design
✓ Battery consumption improvement
✓ Multiple SIM cards support
✓ Quick settings shortcuts to join Wi-Fi networks
or control Bluetooth devices
✓ Lock protection if lost or stolen
✓ High Definition voice call
✓ Stability and performance enhancements

➢ Android Marshmallow 6.0
✓ Released on Oct. 5, 2015.
✓ USB Type-C support
✓ Fingerprint Authentication support
✓ Better battery life with "deep sleep"
✓ Permissions dashboard
✓ Android Pay
✓ MIDI support

✓ Released on Aug. 22, 2016.

✓ Better multitasking
✓ Seamless system updates

(with dual system partition)
✓ Better performance
✓ Night Light
✓ Storage manager improvements
✓ Performance improvements for Touch and Display management

➢ Android Oreo 8.0
✓ picture-in-picture (PIP) mode.

✓ ...

➢ Android Pie 9.0
✓ New Gesture Navigation
✓ Adaptive Battery and Brightness …

➢ Android 10.0
✓ Background access to camera, microphone and sensors disabled for more

privacy protection
✓ New system-wide dark theme/mode …
✓ Addition of Kotlin language

➢ Android 11 is the eleventh major version of the Android

operating system called “R” on Sep., 2020

Android Distribution

Source: http://developer.android.com/resources/dashboard/platform-versions.html

Technically speaking

Android is a software
stack for mobile devices
that includes an
operating system,
middleware and key
applications.

Architecture

Android S/W Stack - Application

 Android provides a set of core applications:

✓ Email Client

✓ SMS Program

✓ Calendar

✓ Maps

✓ Browser

✓ Contacts

✓ And many more

 All applications are generally written using the Java
language.

Android S/W Stack – App Framework

Enabling and simplifying the reuse of
components

✓ Applications can publish their capabilities and
any other application may then make use of
those capabilities

✓ Developers have full access to the same
framework APIs used by the core applications.

✓ Users are allowed to replace components.

Android S/W Stack – App Framework

 Contains all classes, cores and services
that are used to build Android apps

 Categorization

◼ Hardware services

◼ Core platform services

•Telephony Service

•Location Service

•Bluetooth Service

•Wi-Fi Service

•USB Service

•Sensor Service

Hardware Services

Core Platform Services

Core Platform Services (cont.)

Feature Role

View
System

Used to build an application, including lists, grids,
text boxes, buttons, and embedded web browser

Content
Provider

Enabling applications to access data from other
applications or to share their own data

Resource
Manager

Providing access to non-code resources
(localized strings, graphics, and layout files)

Notification
Manager

Enabling all applications to display customer
alerts in the status bar

Activity
Manager

Managing the lifecycle of applications

Architecture

Android S/W Stack - Libraries

 Bionic, a super fast and small GPL-based standard C
system library (libc) optimized for embedded Linux-
based devices

 Surface Manager for composing window manager with
off-screen buffering for 2D and 3D graphics hardware
support or software simulation

 Media codecs offer support for major audio/video
codecs

 SQLite database

 WebKit library for fast HTML rendering

 Exposed to developers through the Android
application framework

Android S/W Stack - Android Runtime

Android S/W Stack – Runtime (cont.)

 Dalvik VM is Google’s implementation of Java

 Execute the Dalvik Executable (.dex) format

 Optimized for minimal memory footprint

 Provides Android apps portability and run time consistency

 Relying on the Linux Kernel for:

➢ Threading

➢ Low-level memory management

 Key Dalvik differences:

◼ Register-based versus stack-based VM

◼ More efficient and compact implementation

◼ Different set of Java libraries than SDK

Android ART

 Android Runtime has replaced DVM since Android
Lollipop. ART uses Ahead of Time Approach (AOT)
instead of JIT.

 Using AOT, the dex files are compiled before they
are needed. Usually, they are done at installation
time only and then stored in phone storage.

 dex2oat is a utility used when installing for
updating applications

 ELF (Executable and Link formatable format)

 https://www.geeksforgeeks.org/difference-between-dalvik-and-art-in-
android/

Android S/W Stack – Linux Kernel

⚫ Relying on Linux Kernel 2.6 for core system services

✓ Memory and Process Management

✓ Power management

✓ Network Stack

✓ Driver Model

✓ Security

⚫ Providing an abstraction layer between the H/W and the rest

of the S/W stack

File System

 The file system has three main mount points.
◼ One for system,

◼ one for the apps,

◼ and one for others

 Each app has its own sandbox easily accessible to
it. No one else can access its data. The sandbox
is in /data/data/package_name/

 SDCard is always there. It’s a good place for
large files, such as movies and music. Everyone
can access it.

Database Support

 The Android API contains support for creating and using
SQLite databases. Each database is private to the
application that creates it.

 SQLite, a database tool enables you to browse table
contents, run SQL commands, and perform other useful
functions on SQLite databases.

 All databases, SQLite and others, are stored on the device
in /data/data/package_name/databases.

Development Process for an Android app

Building and Running

 ADB is a client server program that lets you communicate
with an emulator instance or connected Android device for
installing and debugging apps

 ADB is included in the Android SDK Platform

 An IDE like Android Studio handles this entire process for
you.

Compiled resources
(xml files)

Android Debug Bridge

Applications Are Boxed

 By default, each app is run in its own
Linux process

◼ Process started when app’s code needs to be
executed

◼ Threads can be started to handle time-
consuming operations

 Each process has its own Dalvik VM

 By default, each app is assigned unique
Linux ID

◼ Permissions are set so app’s files are only
visible to that app

Application packages

 .apk files - compressed files

◼ class byte code

◼ resources(icons, sounds, etc).

◼ Binary native files

 All .apks are signed

◼ Default development key is created by SDK.

◼ When updating an application, signature are checked.

 Installing an app from application distribution
markets

◼ Google Play

◼ Amazon AppStore

 From your local computer using adb

Google Play
https://play.google.com/store

 Has various categories, allows ratings

 Have both free/paid apps

 Featured apps- To help users discover great
apps, there are many lists where apps are
featured such as

◼ Popular

◼ New

◼ Selected by Google Play team

Publishing to Google Play

 Registering for a Google Play publisher account

◼ Enter basic information about your developer identity.

◼ Read and accept the Developer Distribution
Agreement

◼ Pay a $25 USD registration fee using Google
payments.

◼ When your registration is verified, you’ll be notified at
the email address you entered during registration

 Setting up a Google payments merchant account,
if you will sell apps or in-app products.

 Exploring the Google Play Developer Console and
publishing tools.

 Refer
https://developer.android.com/distribute/googleplay/start.html

Security and Permissions

Security Architecture:

 A central design point of the Android security architecture is
that no application, by default, has permission to perform
any operations that would adversely impact other
applications, the operating system, or the user.

 An application's process is a secure sandbox. It can't
disrupt other applications.

 The permissions required by an application are declared
statically in that application, so they can be known up-front
at install time and will not change after that.

Ref: http://developer.android.com/guide/topics/security/security.html

Security and Permissions

a. Process level security

b. User & File level security

c. Using Permissions

a. Process level security:

 Each Android application

runs inside its own Linux

process.

 Additionally, each application

has its own sandbox file

system with its own set of

preferences and its own

database.

 Other applications cannot

access any of its data,

unless it is explicitly shared.

Security and Permissions

Security and Permissions

b. User and File level security :
 Each Android package (.apk) file installed on the device is given

its own unique Linux user ID, creating a sandbox for it and
preventing it from touching other applications (or other
applications from touching it).

 This user ID is assigned to it when the application is installed on
the device, and remains constant for the duration of its life on
that device.

 Security enforcement happens at the process level, the code of
any two packages can not normally run in the same process, since
they need to run as different Linux users.

 Any data stored by an application will be assigned to that
application's user ID, and not normally accessible to other
packages.

 The file created by your application is owned by your application,
but its global read and/or write permissions have been set
appropriately so any other application can see it.

Security and Permissions

c. Using Permissions:
 A basic Android application has no permissions associated with

it.

 To make use of protected features of the device, you must
include in your AndroidManifest.xml one or more <uses-
permission> tags declaring the permissions that your
application needs.

 For example, an application that needs to monitor incoming
SMS messages would specify:

 <manifest
xmlns:android="http://schemas.android.com/apk/res/android"

package="com.android.app.myapp" >

<uses-permission
android:name="android.permission.RECEIVE_SMS" />

</manifest>

http://developer.android.com/reference/android/R.styleable.html

