
Assembly Language Program Segment Structure

• Data Segments
– Storage for variables

– Variable addresses are computed as offsets from start of

this segment

• Code Segment
– contains executable instructions

• Stack Segment
– used to set aside storage for the stack

– Stack addresses are computed as offsets into this segment

• Segment directives
.data

.code

.stack size

Memory Models

.Model memory_model

– tiny: code+data <= 64K (.com program)

– small: code<=64K, data<=64K, one of each

– medium: data<=64K, one data segment

– compact: code<=64K, one code segment

– large: multiple code and data segments

– huge: allows individual arrays to exceed 64K

– flat: no segments, 32-bit addresses, protected mode only

(80386 and higher)

Program Structure

.model small

.stack 100H

.data

 ;declarations

.code

main proc

 ;code

main endp

 ;other procs

end main

Program Statements

name operation operand(s) comment

• Operation is a predefined or reserved word

› mnemonic - symbolic operation code

› directive - pseudo-operation code

• Space or tab separates initial fields

• Comments begin with semicolon

Most assemblers are not case sensitive

• Pseudo-ops to define data or reserve storage

› DB - byte(s)

› DW - word(s)

› DD - doubleword(s)

› DQ - quadword(s)

• Select a memory model
• Define the stack size
• Declare variables

• Write code
– organize into procedures

• Mark the end of the source file

– optionally, define the entry
point

› DT - tenbyte(s)

• Names can be associated with storage locations

ANum DB -4

 DW 17

ONE

UNO DW 1

X DD ?

• These names are called variables

Interrupts

• The interrupt instruction is used to cause a software

interrupt

› An interrupt interrupts the current program and

executes a subroutine, eventually returning control

to the original program

› Interrupts may be caused by hardware or software

• int interrupt_number ;software interrupt

• Output to Monitor

› DOS Interrupts : interrupt 21h

› This interrupt invokes one of many support routines provided by

DOS

› The DOS function is selected via AH

› Other registers may serve as arguments

› AH = 2, DL = ASCII of character to output

› Character is displayed at the current cursor position, the cursor is

advanced, AL = DL

• Output a String

› Interrupt 21h, function 09h

› DX = offset to the string (in data segment)

› The string is terminated with the '$' character

› To place the address of a variable in DX, use one of the following

› lea DX,theString ;load effective address

› mov DX, offset theString ;immediate data

• Input a Character

› Interrupt 21h, function 01h

› Filtered input with echo

› This function returns the next character in the keyboard buffer

(waiting if necessary)

› The character is echoed to the screen

› AL will contain the ASCII code of the non-control character

› AL=0 if a control character was entered

Example program

Lower to Upper case

.model small

.stack 100h

.code

main proc

 mov ah,1

 int 21h

 sub al,32

 mov dl,al

 mov ah,2

 int 21h

 mov ah,4ch

 int 21h

 main endp

 end main

